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Quasi-Steady State Method: Uncertainty Assessment1

U. Hammerschmidt2

The newly developed quasi-steady state (QSS) method to measure the
thermal conductivity combines characteristic advantages of transient and
steady-state techniques but avoids their major drawbacks. Based upon a tran-
sient hot strip setup, the QSS technique can be realized by adding only two
temperature sensors at different radial distances from the strip. After a short
settling time, the QSS output signal which is the measure for the thermal
conductivity is constant in time as it is for steady-state instruments. More-
over, in contrast to transient techniques, the QSS signal is not altered by
homogeneous boundary conditions. Thus, there is no need to locate a time
window as has to be done with the transient hot wire or transient hot strip
techniques. This paper describes the assessment of the QSS standard uncer-
tainty of thermal conductivity according to the corresponding ISO Guide. As
has already been done in previous papers on the uncertainty of the tran-
sient hot wire and transient hot strip techniques, first, the most significant
sources of error are analyzed and numerically evaluated. Then the results are
combined to yield an estimated overall uncertainty of 3.8%. Simultaneously,
the present assessment is used as an aid in planning an experiment and in
designing a QSS sensor to achieve minimal uncertainty. Such a sensor is used
to verify the above mentioned standard uncertainty from a run on the can-
didate reference material polymethyl methacrylate.

KEY WORDS: boundary condition; ISO GUM; polymethyl methacrylate;
quasi-steady state technique; sensor design; standard uncertainty; thermal
conductivity; transient hot strip; transient hot wire.

1. INTRODUCTION

The thermal conductivity, λ, is experimentally determined from the
response of the temperature of the medium under test to an imposed
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known rate of heat flow. The observed temperature may be either constant
or variable with time. According to this nature, measuring methods can be
grouped into two classes: steady-state and transient techniques.

Now, there is a third class in between, the quasi-steady state (QSS)
technique [1]. This method allows a transient operating instrument to gen-
erate a steady-state temperature response. This output signal is a direct
measure of the thermal conductivity. Based upon a conventional transient
hot wire (THW) or transient hot strip (THS) arrangement, the QSS tech-
nique can be realized by simply adding one thermometer. The difference
in the temperatures of this thermometer and the wire or strip becomes
constant after a short settling time, independent of the dynamic temper-
ature field within the specimen [1]. Moreover, as has been shown in Ref.
1, homogeneous boundary conditions do not affect the QSS. Thus, there
is no need for guard heaters as with steady-state apparatuses or for
locating a proper time window to evaluate the output signal of transient
instruments [1, 2]. Hence, according to the QSS, an indicating thermal
conductivity meter can be built.

Whenever a new technique is available in addition to well-established
other methods for the same task, frequently there is the question as to
which one will produce the best results, i.e., results of the least uncertainty.
The problem can readily be solved by uncertainty analyses of the com-
peting methods, such as in the present case, the transient hot wire and
hot strip techniques and, e.g., the steady-state guarded hot plate methods.
The uncertainties of the three methods mentioned have meanwhile been
assessed by the same author [2–4] following the ISO GUM [5]. For the hot
plate instrument of Physikalisch–Technische Bundesanstalt (PTB) a stan-
dard uncertainty of 1.9% has been estimated while for the other two tran-
sient techniques, 5% (THS) and 5.8% (THW) have been found.

In this paper, the uncertainty of the QSS technique will be assessed
according to the ISO GUM and compared to already published data
of three comparable instruments. First, the theoretical background will
briefly be reviewed to identify the underlying simple physical principles.
The main body of the paper then proceeds as has been done with the
three uncertainty assessments mentioned; a general uncertainty analysis
is performed analyzing three types of major errors caused by the model,
the evaluation procedure, and the measuring instruments. The sensitivity
of the result to errors of the measurement inputs is quantified. From the
identified uncertainty magnification factors, design criteria for the QSS λ-
sensor used and the experiment are derived.

Although the new technique can also be applied to liquids and gases,
the investigations here are restricted to solids. Experiments on polymethyl
methacrylate, a candidate reference material, confirm the results.
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2. THEORY

The ideal physical model of the QSS technique is that of an embed-
ded infinite line or strip heat source that liberates its constant rate of heat
flow, �, entirely to the surrounding cylindrical medium of finite radius
R. At this point, it should be emphasized, that the latter condition, a
finite medium, is distinct from the ideal models of the transient hot wire
and transient hot strip techniques that require an unbounded surround-
ing medium. Apart from that, the fundamental THW model is taken as a
basis of the QSS method. It will be shown that this model can be applied
to the THS technique with only minor modifications.

The theory of the transient hot wire technique is presented in detail
elsewhere [e.g., Refs. 3 and 6–8]. In this technique, a line source of con-
stant strength per unit length, �/L, liberates its heat to an unbounded
specimen of constant thermal conductivity λ and thermal diffusivity a.
The resulting temperature rise, ∆T (r, t) = T (r, t) − T0, of the specimen at
time t and position r is governed by

∆T (r, t)= �

4πLλ

[
−Ei

(
− r2

4at

)]
, (1)

where T0 =T (r, t =0) is the initial temperature. In practice, the rate of heat
flow, �=UI0, is generated by a Joule heated wire of voltage drop U due
to an imposed electrical current I0. The exponential integral, −Ei(−z) ≡
E1(z), can be expanded into a McLaurin series. Retaining the first four
terms results in

∆T (r, t)≈ �

4πLλ


−γ − ln

(
r2

4at

)
+ r2

4at
− 1

4

(
r2

4at

)2

 . (2)

For

at

r2
�1, (3)

all terms of the series vanish except the first two for which γ is Euler’s
constant. Both of these terms contribute to the standard working equation
of the transient hot wire technique

∆T (r, t)= �

4πLλ
ln
(

4at

Cr2

)
, (4)

where C = exp γ =1.781 . . .
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The QSS working equation is easily found by calculating the tempera-
ture difference, T (r1, t)−T (r2, t), between two stations T1 and T2 at r =r1
and r = r2 = εr1(ε >1), respectively,

∆′T = �

4πLλ
ln

r2
2

r2
1

= �

4πLλ
ln ε2. (5)

(Substituting r2 =R (outer radius of the cylindrical specimen), yields, as a
special case, the working equation of the steady-state mode.) As discussed
in detail in Ref. 2, Eq. (5) is practically not valid before the time,

tW2
min �9

r2
2

a
, (6)

because of the truncation of the above series. The superscript “W2” stands
for “wire/thermometer T2”. The upper time limit of Eq. (5) is discussed
below.

Equation (5) can be solved for λ by simply rearranging it

λ= �

4πL∆′T (t)
ln ε2, �=UI0. (7)

In this equation, it is assumed that

ε = r2

r1
>1, (8)

Since ∆′T = ∆′T (t), in Eq. (7) the quantity to be measured, λ = λ(t),
appears as a pseudo-function of time t .

Due to the finite speed of propagation of heat in solids and fluids,
the difference in the individual distances of the two thermometers from
the source causes a shift in their quasilinear response times, ∆ ln t . This
period in time can be expressed as follows [cf. Ref. 9]:

∆ ln t = ln tT2 − ln tT1 = ln
(

r2

r1

)2

=2 ln ε (9)

or

ln r2 − ln r1

ln tT2 − ln tT2

= 1
2
. (10)

The mutual shift, ∆ ln t , does not depend on the thermal diffusivity of the
medium. From Eq. (10) it follows that

r2

r1
=
√

tT2

tT1

. (11)
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Equation (9) is substituted into Eq. (7) to solve for the experimental result

λ= �

4πL∆′T
∆ ln t. (12)

This result is the time-equivalent of the above basic QSS working equa-
tion, Eq. (7). The thermal conductivity measured is assigned to the work-
ing temperature, TW, which is the mean of the temperatures of the two
stations T1 and T2

TW = T (r1, t)+T (r2, t)

2
. (13)

Typical temperature excursions, T (r1, t) and T (r2, t), of thermometers T1
and T2 have been calculated for a given parameter set to Eq. (1). Both
curves, W1 and W2, can be seen in Fig. 1 together with their QSS sig-
nal, WD, according to Eq. (5). The QSS mode with its time invariant
output signal starts as soon as the input signal of the second thermometer
at r = r2 begins to rise sufficiently linear in ln t (cf. Eq. (6)). However, in
contrast to both its constituents, the QSS signal practically is not altered

Fig. 1. Calculated temperature excursions in time (ln t) of two
thermometers at different radial distances, r1 and r2, from (1) a
hot wire (W1, W2 ) and (2) a hot strip (S1, S2) heat source. The
curves indicated as WL and SL are the Quasi-linear approxima-
tions, and WD and SD are the related QSS signals. The times
denoted as tW2

min and tS2
min are the onset times of the QSS hot wire

and the QSS hot strip techniques, respectively.
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by homogeneous linear isothermal or adiabatic boundary conditions. This
remarkable effect has already been discussed in detail in Ref. 1; if bound-
ary conditions are isothermal (first kind) or convective (third kind), the
QSS mode turns into the steady-state mode (see above), i.e., the output
signal does not change with time. In these two cases, Eq. (12) of course
breaks down while Eq. (5) still remains valid. If boundary conditions
are adiabatic (second kind), the QSS mode turns into the “calorimetric”
mode. Now, the temperature difference considered here is given by [1]

∆′T a = �

4πLλ

(
ln ε2 + r2

1 (1− ε2)

R2

)
= �

4πLλ
(ln ε2 +ϕ). (14)

The superscript “a” stands for adiabatic (boundary conditions). Compared
with Eq. (5), there is an additional term, ϕ, on the right-hand side of Eq.
(14).

ϕ = r2
1 − r2

2

R2
<1. (15)

As expected, for r1 = r2, both terms ϕ and ln ε vanish. For R�
√

|r2
1 − r2

2 |,
only ϕ dies out. This is the case for typical values of interest of r1, r2 and
R (e.g., for r1 =3.5 mm, r2 =10.5 mm, and R =30 mm it follows ϕ =−0.1,
cf. Fig. 1). Otherwise, ϕ has to be applied as a correction factor. In prac-
tice, the QSS mode still works under adiabatic boundaries. Then, Eq. (9)
attains a form that is linear in t

∆ta = R2

4a
(ln ε2 +ϕ). (16)

Substituting Eq. (15) into Eq. (13) yields

∆′T a = �

4πLλ

4a∆ta

R2
(17)

from which with πR2L=V and a/λ=1/(ρcp)=V/(mcp), directly emerges

cp = �

m

(
∆′T
∆ta

)−1

. (18)

Here, m denotes the mass of the specimen whose specific heat, cp, can
be determined according to Eq. (18).

So far, the results show that a QSS run can be performed for the
same task at each of the three different boundary conditions discussed.
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Furthermore, once settled, the QSS output signal is constant so that there
might be no time limit for an experiment. From practical aspects, now the
question arises which of the three boundaries will produce the best data in
an experiment.

A very important aspect here is to look at the dissimilar temperature
excursions of the specimen at the different boundaries.

At isothermal or appropriate convective boundary conditions, the
specimen temperature, TW(t), can easily be maintained constant. At adi-
abatic boundaries, however, after some time, TW(t) will increase linearly
without bound because the specimen cannot release any heat to the sur-
roundings. In contrast to one of the fundamental assumptions of the
above briefly discussed ideal theory, in practice, the thermal conductiv-
ity of matter generally is not a constant but depends on temperature,
λ = λ(T ). Hence, the thermal conductivity, λ = λ(T (t)), of the specimen
will continuously change throughout an adiabatically bounded experiment.
That is why in thermal transport properties measurements the temperature
of the outer surface of the specimen is maintained constant during a run.
In transient experiments, it is good practice to limit the temperature excur-
sion of the specimen to about 2 K or even less. However, since the QSS
signal appears as the pseudo-function λ=λ(t), a run at adiabatic bound-
aries might provide the thermal conductivity as a function of temperature.

The above analysis can easily be extended to the THS technique.
As has been shown in some detail in Ref. 1, both working equations,
Eqs. (7) and (12), remain valid for this closely related method as long as
r1, r2 � D. Here, D is the width of the strip. However, there is a remark-
able difference between both transient techniques while used in the QSS
mode. The onset of the QSS mode of a hot strip setup, the time tS2

min, is
significantly smaller than that, tW2

min (cf. Eq. (6)), for a hot wire arrange-
ment [2]

tS2
min �

r2
2

a
. (19)

(cf. Fig. 1). According to Ref. 9, in the case of the THW technique, the
signals at r = r1 (“W1”) and r = r2 (“W2”) are governed by

T W(r, t) = T i
0 + �0

4πLλ
ln
(

R

r

)2

−4
∞∑

n=1

J0 (µnr/R)

µ2
nJ

2
1 (µn)[

�0

4πLλ
+ 1

2
T i

0µnJ1(µn)

]
exp

(
−µ2

nat

R2

)
. (20)
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The eigenvalues are J0(µ) = 0 and J1(µ) = 0. In the case of the THS
method (“S1” and “S2”), the above result can be modified to

T S(r, t)=T W + �0

2
√

πLλ

{
τ erf(τ−1)− τ 2

2
√

π

[
1− exp(−τ−2)

]}
(21)

as long as R > rD. In this equation, the additional term on the right-
hand side represents the effect of the strip geometry on the tempera-
ture field of a line heat source, T W (cf. Refs. 10 and 11). Here, τ =√

4at/r. Figure 1 shows both QSS signals, depicted as “WD” (Eq. (20))
for the THW technique and as “SD” (Eq. (21)) for the THS technique.
While the onset of the linear portion of the THW signal of thermo-
meter T2 occurs at tW2

min �1985 s in the THS mode, the same thermometer
will respond even at tS2

min �221 s.
In the case t → ∞, which here is identical with the steady-state

condition, Eq. (21) turns into the following simple form [11]:

∆T i(r, t →∞)≈ �

4πLλ

[
ln
(

R

r

)2

+3

]
. (22)

The superscript “i” stands for isothermal (boundary conditions).
Setting r = r1 in Eq. (22) and combining this result with Eq. (5) yields

an expression for the radial position of the second thermometer, r2, in
terms of the stationary temperature drop, ∆′T i, between both thermo-
meters, T1 and T2, on the one hand and the steady-state temperature, ∆T i

on the other hand

r2 = r1 exp

{
∆′T i

∆T i

[
ln
(

R

r1

)
+ 3

2

]}
. (23)

From this result, criteria of an optimal design of a QSS sensor can be
derived (see Section 3).

3. EXPERIMENTAL SETUP

A QSS experiment involves measuring the temperature at two sta-
tions inside a cylindrical specimen that conducts the heat generated by
an embedded Joule heat source. This heater may either be a thin wire of
radius r0 or a metal strip of width D. For solids, a strip offers better per-
formance than a wire because of the smaller density of heat flow, �/A,
at its larger surface A and the smaller time lag prior to the onset of the
QSS mode.
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Fig. 2. Calculated temperature excursions in time (ln t) of two
thermometers at different radial distances, r1 and r2, from a
hot strip heat source. The time shift between both signals (S1,
S2) is indicated (same parameters as Fig. 1).

To establish the temperature measurement at two different stations
of a THS arrangement, obviously, there are two simple ways. First, in a
standard THS setup the strip serves as a resistance thermometer (cf., e.g.,
Refs. 2 and 10). By adding an extra temperature sensor, T2, at a known
distance from the strip, this setup is readily expanded to a QSS arrange-
ment (Fig. 2). Optionally, two individual temperature sensors, T1 and T2,
can be employed on one or both sides of the strip (Fig. 3). In practice,
the latter variation of two thermometers is more advantageous; it allows

Fig. 3. Sketch of the QSS λ-sensor. The strip (center) is made from manganin©R , both
temperature sensors (cold wires) are made from platinum (not to scale).
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elimination of two different sources of (model) error arising from major
discrepancies between a real THS setup and its underlying ideal mathe-
matical model: (1) From theory, a homogeneous temperature profile along
the longitudinal axis of the strip is assumed. In an experiment, however,
this profile is more or less curved at both ends of the strip because of heat
losses to the surroundings including the electrical leads (end effect). By
placing both thermometers next to the central part of the strip (see Fig. 3)
this source of error can easily be removed. (2) In order to simplify a THS
experiment, generally, a constant current I0 is fed to the strip rather than
a constant power, P =RSI 2, as presumed by theory. By this means, how-
ever, the power consumption may significantly rise throughout the run due
to a temperature dependent increase in the resistance, RS =RS(T ), of the
strip. By using two thermometers, the strip can be operated in its heater
function only. Thus, an alloy of vanishing temperature coefficient of elec-
trical resistance like, e.g., manganin©R (α =0.00001 K−1), applies well as a
source material for the strip.

The following analysis of the major sources of error of the QSS tech-
nique is based on an experimental arrangement of a strip and two separate
temperature sensors. Boundary conditions are maintained isothermal to
keep the working temperature, TW =T0, constant. For this setup, both QSS
working equations, Eqs. (7) and (12), apply. Hence, there are two slightly
different ways to perform a thermal conductivity measurement. Accord-
ing to Eq. (7), the temperature difference ∆′T (t) has to be recorded for
a known ratio of r1 and r2 while otherwise, i.e., Eq. (12), the time shift
∆ ln t has simultaneously to be determined from both individual temper-
ature excursions (cf. Fig. 2). Here, the first procedure, Eq. (7) is taken as
the basis of a measurement.

The λ-sensor used for the experiments is depicted schematically in
Fig. 3. Sandwiched between two polyimide (Kapton©R ) foils (each with a
thickness ν =25µm) there are a strip made from manganin©R (ν =10µm)
and two thin platinum wires (Ø = 10µm) as the resistance thermometers.
The electrical resistivity of the central part of these temperature sensors is
RT =18� each. For any given set of dimensional parameters r1, r2, D, and
R of the sensor and the specimen, respectively, the following must be valid
D � r1 <r2 �R (see Tables I and II).

The specimen used here to confirm the results of the uncertainty
assessment is a parallelepiped consisting of two identical halves. The mate-
rial is polymethyl methacrylate (PMMA, Plexiglas©R , Type GS, Degussa
Röhm Plexiglas GmbH, Germany). This type of PMMA is a candidate
reference material of PTB. The specimen has been cut from the refer-
ence material stock. To minimize thermal contact resistances, those
surfaces contacting the λ-sensor were polished carefully. The sample is
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Table I. Geometrical Dimensions of the λ-Sensor (see text)

Strip Symbol Dimension (mm)

Length L 100.0
Width D 3.0

Thickness ν 0.01
Distance to T1 r1 3.5
Distance to T2 r2 10.5

Table II. Geometrical Dimensions of the Specimen (One Half) (see text)

Specimen Symbol Dimension (mm)

Length L 100.0
Width R 30.0

Thickness V 15.0

contained inside a metallic sample holder that itself is immersed in a
thermostated bath.

For any given set of dimensional parameters, r1, r2, and L of the
sensor, the input power, P = UI0 = �, to the strip should be adjusted to
the specimen’s expected thermal conductivity in order to generate a proper
output signal (see Section 4). As has been mentioned above, the tempera-
ture excursion T1(r1, t)(>T2(r2, t)) should not exceed 2 K.

4. MODEL AND MEASUREMENT ERRORS

According to the working equation, Eq. (7), the thermal conductivity
is measured as a pseudo-function in time. In practice, a series of equiva-
lent values, λ(ti) = λi, of the measurand are recorded at a constant clock
rate of the digital voltmeter. Thus, each individual result is subject to sys-
tematic, type-B, and random, type-A, uncertainties. Systematic uncertain-
ties have the same effect on the measurement each time a sample, λi is
acquired. Random uncertainties vary from sample to sample. In accor-
dance to the ISO Guide, once estimated, both uncertainties are handled
in the same manner; they are root-sum squared.

To calculate the systematic uncertainties first, seven parameters, U, I0,
T1, T2, L, r1, and r2 have to be taken into account. The first four
parameters stem from the electrical part of the setup, including both tem-
peratures that are determined by resistance thermometry. The following
three-dimensional parameters depend on the type of the sensor used and,
thus, are fixed by their layout. Generally, they are subject to thermal
expansion, in case of L and D, of the metal of the strip (manganin) and,
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in case of the base material, of the polyimide foil. In the following, how-
ever, room temperature is assumed. It is further assumed that the polyi-
mide foil is thin enough not to have a significant effect on the result of the
measurement. Moreover, as a reference, polymethyl methacrylate is used
here because of its thermal conductivity that differs only slightly from
that of the foil (λKapton =0.2 W·m−1·K−1). The thermal contact resistance
between the foil and the specimen is neglected. The influence of the insu-
lating base material of the sensor on the result of a measurement and on
the overall uncertainty is difficult to derive analytically. Therefore, numer-
ical studies using finite element methods are under way. Results obtained
so far show that, in the present case, the uncertainty due to the non-van-
ishing thickness of the foil can be assessed to be less than 0.1%.

Finally, the working equation itself can give rise to errors because of
ideal assumptions and approximations made to derive it from the under-
lying fundamental partial differential equation.

4.1. Linear Model Error

A QSS setup can be analytically treated only for the above made
assumption that the exponential integral, −Ei(−z), on the right hand side
of the THW ideal model equation, Eq. (1), may be represented sufficiently
precise by the first two terms of the related McLaurin series. This, how-
ever, is true only for r2/at 	 1. Due to the asymptotic form of the (quasi)
linearization of Eq. (2), there is a certain deviation from the ideal model,
known as the linear model error (Refs. 2 and 3). In THW and THS exper-
iments this error may significantly increase the uncertainty of the measu-
rands λ and a.

To analyze the implications of the model error for the uncertainty of
a QSS run, the working equation, Eq. (5), is recalculated. Now, two more
terms of the series are retained as represented by Eq. (2). The asymptotic
relation governing QSS signals is expressed as

∆′T (r, t)= �

4πLλ


ln

(
r2

2

r2
1

)
−
(
r2

2 − r2
1

)
4at

+ 1
4

((
r2

2 − r2
1

)
4at

)2

∓ . . .


 . (24)

Obviously, all terms of the remainder die out for (r2
2 − r2

1 )/(4at)	 1. For
r2 >

√
2r1 the difference of the squares,

(
r2

2 − r2
1

)
, is larger than r2

1 itself.
Hence, in this case it takes more time for the QSS signal to settle. This
result fully agrees with the approximation in Eq. (6), i.e., the output sig-
nal ∆′T =T1 −T2 will not be sufficiently constant before the second input
signal, ∆T2, starts to vary as ln t . Once settled, the QSS signal is prac-
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tically free of any linear model error. Hence, the model error is self-vali-
dating; for the case where at least one single temperature signal, T1(t) or
T2(t), cannot be described by the simple quasi-linear equation, Eq. (4), the
composed QSS signal will not be sufficiently constant in time.

4.2. Power

The heat flow, �, generated by the strip is determined from its elec-
tric input power, �=P =U(RS)I0. The voltage drop, U , across the strip
is directly measured and the current, I0, is determined indirectly from the
voltage drop, UR, across a calibrated four-pole standard resistor RR =1�.
As has been mentioned above, despite a constant current operation there
is no significant change in the power consumption of the strip because of
the very small temperature coefficient of its electrical resistance.
The following working relation holds

P =UUR/RR. (25)

The variance of the quantity P is given by

u2(P )=
(

UR

RR

)2

u2(U)+
(

U

RR

)2

u2(UR)+
(

UUR

R2
R

)2

u2(RR). (26)

Here, the variance of the standard resistor, u2(R), is obtained from the
calibration certificate. The variances of the voltmeter, u2(U) and u2(UR),
are taken from the manufacturer specifications that have been verified by
in-house calibration. All three variances have been calculated according to
type-B method

u2(P )=2.3×10−8 W2.

4.3. Temperature

The maximum temperature range of the sensor is predetermined by
the base material which can be, e.g., a polymer, a ceramic, or a mica foil.
Here, the high performance polyimide Kapton©R is taken that can be used
at temperatures from –270 up to 250◦C.

At present, the accessible temperature range for a QSS run at PTB is
from −80 to 220◦C. During a run at the controlled working temperature,
T0, the temperature excursion of the specimen is limited to T = T0 + 2 K.
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The temperatures T1 and T2 are individually measured by the two plati-
num wires of the sensor (see Fig. 3 ). These thermometers were calibrated
against a reference standard Pt-25 resistor. The observed mean values of
15 measurements of each of four different temperatures, measured as volt-
age drop and converted into temperatures in accordance with the individ-
ual calibration tables show a maximum variance of

u2(T )=82×10−6 K2.

4.4. Ambient Temperature Variation

The experiments are carried out inside a well-stirred thermostated
bath. Its randomly distributed temperature variations are determined to
be ±10 . . .15 mK. Any change in the working temperature, TW , causes a
departure in the measured voltage signals of T1 and T2

δUT
i =αU0

dTW

dt
ti. (27)

Depending on the period of the temperature–time variations of the bath
and the mutual distance between the two thermometers, the fluctuations in
the temperature difference δ

(
∆′T

)= δUT1
i − δUT2

i generally reveal a com-
plex behavior. They may even vanish. This error is treated as part of the
random uncertainty of the λi-readings (see Section 4.5).

4.5. Dimensional Parameters

The three dimensional parameters to be taken into account are L,
length of the hot strip, and the individual distances, r1 and r2, of both
thermometers from the longitudinal axis of the strip. All three lengths
were determined at room temperature using a measuring microscope.
The half width of bounds is 1/100 mm for a rectangular probability
distribution.

5. STANDARD UNCERTAINTY

The physical process of a QSS measurement is governed by the
expression,

λ(TW )= UI0

2πL [T (r1, t)−T (r2, t)]
(ln r2 − ln r1) . (28)



Quasi-Steady State Method: Uncertainty Assessment 1177

It is assumed that both temperature excursions, T1(t) = T (r1, t) and
T2(t) = T (r2, t), and both (constant) radii, r1 and r2, are measured sepa-
rately. Furthermore, ri and not ln ri is determined experimentally. Then,
according to the GUM [5], the standard uncertainty of the measurand is
composed from the relative uncertainties, u(xi)/xi, in the measured vari-
ables xi as follows:(

u(λ)

λ

)2

=
(

u(U)

U

)2

+
(

u(I0)

I0

)2

+
(

u(L)

L

)2

+
(

u(T1)

T1 −T2

)2

+
(

u(T2)

T1 −T2

)2

+
(

u(r1)

r1 ln ε

)2

+
(

u(r2)

r2 ln ε

)2

+
(

δMλ

λ

)2

+
(

δRλ

λ

)2

. (29)

As a result of the additive form of the expression, Eq. (28), the rela-
tive uncertainty in λ depends not only on the component uncertainties in
the variables U , I0, T1, T2, L, r1, and r2 but also on the values of both
temperatures and radii. For these two pairs of parameters the so-called
uncertainty magnification factors, UMFi are different from 1(

u(λ)

λ

)2

=
(

u(U)

U

)2

+
(

u(I0)

I0

)2

+
(

u(L)

L

)2

+
(

T1

T1 −T2

)2(
u(T1)

T1

)2

+
(

T2

T1 −T2

)2(
u(T2)

T2

)2

+
(

1
ln ε

)2(
u(r1)

r1

)2

+
(

1
ln ε

)2(
u(r2)

r2

)2

+
(

δMλ

λ

)2

+
(

δRλ

λ

)2

. (30)

According to Ref. 14, the uncertainty magnification factors that mul-
tiply the relative uncertainties of the variables are defined as

UMFi =
Xi

λ

∂λ

∂Xi
, λ=λ

(
X1,X2,X3, . . . ,Xj

)
. (31)

For further discussions on the UMFi , see Section 5.1.
In Eq. (30) both uncertainties in temperature are equal, u(T1) =

u(T2)=u(T ). The term next to the last one on the right-hand side, δMλ/λ,
represents the uncertainty due to the linear model error. As has been
shown already, it may further be neglected. The last term on the right-
hand side, δRλ/λ, denotes the uncertainty caused by nonsystematic effects
on each individual reading λi.

Typically, the measurand is obtained as a series of N individual obser-
vations, λi (TW), taken over a period in time at equally spaced points ti.

λi(TW)= UI0

2πL [T (r1, ti)−T (r2, ti)]
(ln r2 − ln r1) , i =1, . . . ,N. (32)
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Although a QSS instrument is operating at a “steady” value of λ,
the single readings are not exactly constant due to random uncertainties,
δRλ/λ . The final result, the optimum value of the thermal conductivity, is
derived from the arithmetic mean,

λopt(TW)= 1
N

N∑
i=1

λi(TW). (33)

The dispersion of the random distribution of the measurand, λi(TW),
is given by the related standard deviation from which the uncertainty is
derived.

5.1. Uncertainty Magnification Factor

The uncertainty magnification factor for a given parameter indicates
the influence of the uncertainty in that variable on the uncertainty in the
result [12]. In Eq. (30), the UMF of temperature, e.g., T1, is given by

UMFT1 = T1

T1 −T2
= T1

∆′T
, (34)

while the UMF for both radii is

UMFr = 1
ln ε

= 1
ln(r2/r1)

. (35)

Obviously, the above factors should be as small as possible to assure a
minimum in the overall uncertainty in λ (see Fig. 4). For a given value of 0.1%
for each relative uncertainty in T and r2, both UMF’s were calculated over a
range of ε from 1 to 11. Figures 5 and 6 show the results along with the QSS
offset time tS2

min (depicted in Fig. 5 as tmin) and the QSS signal (depicted in
Fig. 6 as ∆T ). The uncertainty percentage contribution of both parameters
discussed varies from 100 to 0.3% within the relatively small range covered.
Throughout this range, the QSS signal grows with increasing distance of ther-
mometer T2 from the other thermometer because of a declining signal of T2,
T2(t)→T0 =const. (Fig. 6). However, to the same extent, the onset, tS2

min of the
quasi-steady mode is shifted to longer times (Fig. 5). In the limit r2 =R and
T2(t)=T0 (which is not shown in the diagram) the QSS mode turns either into
the steady-state mode (see above) if boundary conditions are isothermal or
adequately convective or into a “calorimetric” mode if adiabatic boundaries
are present.
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Fig. 4. Uncertainty magnification factor UMFr of the parameter
“radius” versus ratio of radial distances, ε, of the thermometers.

Fig. 5. QSS onset time tS
min (left y-axis) and percentage uncer-

tainty of radius r2 (right y-axis) versus ε (see text).

5.2. Sensor and Experiment Design

From the above briefly discussed UMF’s, some criteria for the design
of an optimal QSS sensor and of the best suited experiment, concern-
ing temperatures and the onset of the QSS mode, can be derived. The
UMF for ri is a function of ri itself and grows without bound as r2/r1
approaches unity (Fig. 4). Conversely, as r2/r1 →∞, UMFr vanishes. This
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Fig. 6. Temperature drop between the two thermometers at r1 and r2,
respectively (left y-axis) and percentage uncertainty of temperature (right
y-axis) versus ε (see text).

behavior still is quite clear because, in the first case, the QSS mode breaks
down (r2 = r1) and, in the second case, this mode does not start at all (t →
∞). Whereas, the situation becomes more complicated when taking into
account that each of both UMF’s of temperature, UMFT1 and UMFT2,
depend on the UMF of radius, UMFr . From Eqs. (5) and (34),

UMFT1 = T1

k ln ε
= T1

k
UMFr, ∆′T =k ln ε, k = �

2πLλ
= const., (36)

directly emerges. For a fixed value of r1, the temperature difference
increases with growing r2. However, as r2 becomes larger, the onset of the
QSS mode is shifted in time since by Eq. (19)

tS2
min ∝ r2

2 (37)

is valid. Here again, for r2 = r1 (cf. Eq. (11)) the QSS mode breaks down.
Obviously, there are various compromises available that individually apply
for different experimental situations. By varying the position, r2, of the
thermometer T2, the overall uncertainty, u(λ), the onset of the QSS mode,
tS2
min, and/or the temperature difference, ∆′T , can be controlled.

The strategy for the brief parametric study on an optimum sensor
design followed is to simultaneously look at the two different pairs of vari-
ables (1) ∆′T and UMFT (Fig. 6) and (2) tS2

min and UMFr (Fig. 5) in order
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to minimize the overall uncertainty in the measurand. Alternative objec-
tives could be, e.g., to minimize the onset time or the temperature drop
between the thermometers for an uncertainty that consequently is higher.

First of all, there are three fundamental criteria for the layout of the
sensor that have to be fulfilled. The parameters L, D, R, and r1 are fixed
in a way that

(1) L�D,
(2) D � r1 <r2 <R,
(3) T2(t)<T1(t)<2 K.

Assumption (1) ensures that there is a family of concentric near-circular
isotherms around the strip source. According to (2), both thermometers
are located inside this family of isotherms (cf. Refs. 1 and 2). Finally, (3) is
good practice for transient measurements of thermal conductivity because
λ=λ(T ).

All values that have been assigned to the fixed parameters are listed
in Tables I and II. Only the radius r2 remains to be determined; to achieve
a relative uncertainty in temperature and radius of less than, let’s say, 1%
each, the ratio ε has to be equal to at least 3 (Figs. 5 and 6). For ε0 =
3, i.e., r2 = 10.5 mm, the QSS onset will be at tS2

min ≈ 100 s (Fig. 5) and
the temperature drop between the two thermometers will be ∆′T i ≈0.72 K
(Fig. 6). This last result together with T1(t →∞)=∆T i ≈ 2 K (see condi-
tion (3)), inserted into Eq. (23), yields

r2 = r1 exp

{
∆′T i

∆T i

[
ln
(

R

r1

)
+ 3

2

]}
=10.1 mm,

which agrees well with the above chosen ratio ε0. For values of r2 rang-
ing from 3.6 to 15 mm, the resulting temperature difference ∆′T i is plot-
ted in Fig. 7. The parameters used to calculate ∆′T i are the same as for
the uncertainty budget given in Section 5.3.

Finally, the electrical parameters of the experiment can be assessed;
Eq. (5) is rearranged for the input power of the strip,

�=RSI 2
0 =2πLλ∆′T

[
ln
(

r2

r1

)]−1

. (38)

The already known dimensional parameters are inserted along with an
estimate of the thermal conductivity of the specimen, here, PMMA. For
a polymer at room temperature, the thermal conductivity should be λ ≈
0.2 W ·m−1·K−1. Then, for the power input of the strip, the value � ≈
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Fig. 7. Calculated radial distance from strip of thermometer T2
versus temperature difference between both thermometers T1 and
T2.

0.080 W is estimated. Thus, a current of I0 ≈170 mA has to be fed to the
strip of resistance RS =2.9�.

5.3. Uncertainty Budget

All results of the component uncertainties, u(xi), are listed in Table III
together with the experimental parameters of a measurement on PMMA
at room temperature. Obviously, the actual experimental parameters agree
very well with those estimated above. Table III additionally lists the
numerical values of the sensitivity coefficients, mi =∂λ/∂xi, and a percent-
age index that describes the contribution of each component to the overall
uncertainty.

The result of the measurement is λ=0.1928±7.2×10−3 W·m−1·K−1.
The uncertainty (3.7%) is based on a standard uncertainty mutliplied by a
coverage factor of k = 2 which provides a level of confidence of approxi-
mately 95% (20 to 1 odds).

The result mentioned agrees very well with the preliminary reference
value of this material that is given as λ= 0.1934 ± 12 × 10−3 W·m−1·K−1.
Further measurements at temperatures other than room temperature are
under way. The last column of Table III, labeled as ‘Index’, lists the frac-
tions of all component uncertainties except for the random uncertainty
δRλ. N denotes the total number of readings, λi (i =1, . . . ,N).
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Fig. 8. Standard uncertainty in thermal conductivity for given λ-
sensor parameters versus temperature drop between the two ther-
mometers at r1 and r2, respectively.

From Table III it is immediately apparent that the effect of the uncer-
tainty of the electrical and dimensional parameters is negligible relative
to the influence of u(T ). The results listed under ‘Index’ reveal that both
temperature uncertainties are by far the largest components of the overall
uncertainty despite their small sensitivity coefficient. This behavior is not
surprising; it was already found for the THS, THW, and the guarded hot
plate techniques (Refs. 2–4).

For the above experiment on PMMA, the percentage standard uncer-
tainty (k = 2) of thermal conductivity has been assessed in terms of the
temperature difference between both thermometers ranging from 0.05 to
1 K. The results in Fig. 8 show the considerable influence of this parame-
ter on the uncertainty. To ensure an acceptable uncertainty in thermal con-
ductivity of, let’s say, u(λ)/λ�5%, the temperature difference has to be
greater than 0.55 K. From Fig. 7 follows a minimal value of r2 �8 mm.

Despite their relatively great sensitivity coefficients, both radial dis-
tances r1 and r2 have only a minor contribution to the overall uncertainty.
This effect might be underestimated here because thermal expansion has
not been taken into account.

Comparing the above assessed uncertainty of the QSS technique with
equivalent other methods like the guarded hot plate, GHP (1.9% from Ref.
4), the transient hot wire (5.8% from Ref. 3), and the transient hot strip
(5% from Ref. 2) techniques reveals that the most precise instrument for
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poor conducting solids still is the GHP apparatus. However, if a short
measurement time at a reasonable uncertainty level is demanded the QSS
method is able to compete with the transient techniques mentioned.

6. CONCLUSION

The present study analyzes the most significant sources of error of
the newly developed QSS technique. The results are combined to the stan-
dard uncertainty of thermal conductivity, u(λ)/λ=3.7%, according to the
ISO Guide. This value compares well with those found for the guarded
hot plate (1.9%) THW (5.8%) and THS (5%) techniques. As has been
found for the three other techniques mentioned here, again the temper-
ature uncertainty contributes predominantly to the overall uncertainty in
thermal conductivity.

Simultaneously, the assessment was used as an aid in designing a QSS
sensor of minimal uncertainty and in planning the experiment. Such a sen-
sor is used to verify the above mentioned standard uncertainty from a run
on the candidate reference material polymethyl methacrylate.

It can be concluded that the new QSS technique will meet the require-
ments of good measurement uncertainty if the QSS signal is greater than
0.7 K.
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